Skin Disease Detection and Remedial System

Himani Kalra; Vishal Sugur; Karthick T1

1

Publication Date: 2024/05/28

Abstract: With the advent of smart processing systems in computers it has driven the emergence of inventive solutions within health-care. One notable instance is the Skin Disease Detection and Recommendation System, utilizing AI and machine learning methods to elevate dermatological diagnosis and treatment guidance. This summary offers a comprehensive overview of the Skin Disease Detection System, outlining its core elements, methodologies, advantages, and potential healthcare impact. The System for Skin Disease Detection aims to transform dermatology by automating the skin disease identification process and delivering customized treatment suggestions. This also aims to detect the skin types and suggest remedial medication and other things for the same. Consulting with a dermatologist is also easy by this. Employing image processing, pattern recognition, and deep learning algorithms, this system accurately evaluates skin condition images. The solution's application was developed using Streamlit, Python, PHP, Bootstrap, and MySQL.

Keywords: Skin-Disease Prediction, Deep Learning, Responsive-Web-Design, Efficient Net, Streamlit, Database Management System, Data Security, Scalability, Responsive Load-Balancing, Increased Product.

DOI: https://doi.org/10.38124/ijisrt/IJISRT24MAY395

PDF: https://ijirst.demo4.arinfotech.co/assets/upload/files/IJISRT24MAY395.pdf

REFERENCES

  1. J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, ‘‘Fundamentals of Dermatological recognition,’’ in Robust Automatic Dermatological Recognition: A Bridge to Practical Applications. Waltham, MA, USA: Academic, 2020.
  2. J. Hook, F. Noroozi, O. Toygar, and G. Anbarjafari, ‘‘Automatic image based quality recognition using skin features,’’ Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 1–10, 2021, doi: 10.24425/bpasts.2019.129647.
  3. B. W. Schuller, ‘‘Skin type recognition: Two decades in a nut- shell, benchmarks, and ongoing trends,’’ Commun. ACM, vol. 61, no. 5, pp. 90–99, Apr. 2022, doi: 10.1145/3129340.
  4. F. W. Smith and S. Rossit, ‘‘Identifying and detecting Skin impression’’ PLoS ONE, vol. 13, no. 5, May 2018, Art. no. e0197160, doi: 10.1371/journal.pone.0197160.
  5. M. Chen, P. Zhou, and G. Fortino, ‘‘Dermatological Detection System,’’ IEEE Access, vol. 5, pp. 326–337, 2021, doi: 10.1109/ ACCESS.2016.2641480. M. B. Akçay and K. Oğuz, ‘‘Dermatological image processings, databases, features, preprocessing methods, supporting modalities, and classifiers,’’ Dermatological Commun., vol. 116, pp. 56–76, Jan. 2020, doi: 10.1016/j.specom.2019.12.001.
  6. N. Yala, B. Fergani, and A. Fleury, ‘‘Towards improving feature extraction and classification for activity recognition on streaming data,’’ J. Ambient Intell. Humanized Comput., vol. 8, no. 2, pp. 177–189, Apr. 2017, doi: 10.1007/s12652-016-0412-1.
  7. R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M. H. Zafar, and T. Alhussain, ‘‘Dermatological impact recognition using deep learning tech- niques: A review,’’ IEEE Access, vol. 7, pp. 117327–117345, 2019, doi: 10.1109/ACCESS.2019.2936124.
  8. M. El Ayadi, M. S. Kamel, and F. Karray, ‘‘Survey on Dermatological impact recognition: Features, classification schemes, and databases,’’ Pattern Recognit., vol. 44, no. 3, pp. 572–587, Mar. 2011, doi: 10.1016/j.patcog.2010.09.020.
  9. R. Munot and A. Nenkova, ‘‘Impact impacts Dermatological recognition perfor- mance,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Student Res. Workshop, 2019, pp. 16–21, doi: 10.18653/v1/n19-3003.
  10. H. Gunes and B. Schuller, ‘‘Categorical and dimensional affect analysis in continuous input: Current trends and future directions,’’ Image Vis. Comput., vol. 31, no. 2, pp. 120–136, Feb. 2013, doi: 10.1016/j.imavis.2012.06.016.
  11. S. A. A. Qadri, T. S. Gunawan, M. F. Alghifari, H. Mansor, M. Kartiwi, and Z. Janin, ‘‘A critical insight into multi-diseases Dermatological impact databases,’’ Bull. Elect. Eng. Inform., vol. 8, no. 4, pp. 1312–1323, Dec. 2019, doi: 10.11591/eei.v8i4.1645.
  12. M. Swain, A. Routray, and P. Kabisatpathy, ‘‘Databases, features and clas- sifiers for Dermatological impact recognition: A review,’’ Int. J. Dermatological Technol., vol. 21, no. 1, pp. 93–120, Mar. 2018, doi: 10.1007/s10772-018-9491-z.
  13. H. Cao, R. Verma, and A. Nenkova, ‘‘Speaker-sensitive impact recog- nition via ranking: Studies on acted and spontaneous Dermatological,’’ Com- put. Dermatological Lang., vol. 29, no. 1, pp. 186–202, Jan. 2015, doi: 10.1016/j.csl.2014.01.003.
  14. S. Basu, J. Chakraborty, A. Bag, and M. Aftabuddin, ‘‘A review on impact recognition using Dermatological,’’ in Proc. Int. Conf. Inventive Commun. Comput. Technol., 2017, pp. 109–114, doi: 10.1109/ICICCT.2017.7975169.
  15. F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss, ‘‘A database of German impact Dermatological,’’ in Proc. 9th Eur. Conf. Dermatological Commun. Technol., 2005, pp. 1–4