Publication Date: 2019/10/18
Abstract: Thermo photovoltaic (TPV) system technology is based on the phenomenon of direct conversion of radiation coming from a heat source into electrical energy by means of photovoltaic cells. One of the heat source means is radiative heat transfer from combustion. In this work, we proposed a model for the calculation of thermal fluxes on the surface of TPV absorber coming from the combustion of palm nut shells. For this, we modeled the combustion flame by a cylindrical approach. A radiative model for calculating the incident and net fluxes is presented and, from the first thermodynamics principle, a temperature model for the TPV absorber surface is derived. The obtained models are discretized and solve simultaneously using iterative scheme in MATLAB. From the simulations runs, results of the incident and net fluxes at the surface of the TPV absorber are represented and analysed. The effect of thermal convection on the fluxes is carried out. Further, sensitivity are performed for different TPV heat sink - absorber distances. The model proposed here is suitable for any incident and net fluxes investigation at the surface of the TPV absorber, necessary for any TPV system design.
Keywords: Thermo photovoltaic, combustion, heat transfer, biomass, numerical simulation.
DOI: No DOI Available
PDF: https://ijirst.demo4.arinfotech.co/assets/upload/files/IJISRT19SEP1529.pdf
REFERENCES