Publication Date: 2020/04/25
Abstract: The basic aim of this work is to perform characterization of the powder obtained from surface of waste plastic brick which in turn provides a base to study the physical and chemical composition of bricks made from waste plastic bags and sand (Plastic bricks). The powder used for characterization was obtained from the surface of waste plastic bricks by scratching the surface of bricks with knife-like stainless-steel instruments. Before characterization, this powder was strained through a double layer strainer (mesh number 325, pore size 44 microns) to obtain fine powder particles. This fine powder was further characterised for determining the particle size, crystallinity percentage, elemental composition and to find functional groups present. The techniques used in characterization of powder includes X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy / Energy Dispersive X-ray Spectroscopy (FESEM/EDS). The results obtained from XRD data analysis showed the particle size to be 9.595 nanometres with a crystallinity percentage of 2.113275 percent. EDS and FTIR results when studied simultaneously showed presence of clay minerals like MgO, SiO2, Al2O3, etc. Another observation was the noticeable percent of Antimony present in sample which can be traced to either an impurity in sand used or due to colorants present in plastic bags used
Keywords: Waste-Plastic Bags, Plastic bricks, X-ray Diffraction, FESEM/EDS, FTIR, Spectroscopy.
PDF: https://ijirst.demo4.arinfotech.co/assets/upload/files/IJISRT20APR672.pdf
REFERENCES