AI-Driven Algorithms: Transforming Customer Engagement with AI and Ethical Data Privacy

Laila Arzuman Ara; MD Ishtiyak Rahman1

1

Publication Date: 2025/01/07

Abstract: Artificial Intelligence (AI) is revolutionizing marketing through advanced person- alization, enhanced customer engagement, and optimized strategies. This study explores AI’s impact on metrics like click-through rates (CTR), conversion rates, and customer retention while addressing ethical concerns, including data privacy, consumer autonomy, and algorithmic bias. Employing a mixed-method approach, the research integrates machine learning for predictive analytics, sentiment anal- ysis of customer feedback, and corporate content analysis. Quantitative results reveal significant gains, such as a 150% increase in CTR and a 140% rise in conversion rates due to AI-driven personalization. However, qualitative findings highlight consumer concerns about intrusiveness, data misuse, and corporate transparency gaps. The study emphasizes AI’s dual role in enhancing experi- ences and posing ethical dilemmas. It advocates for transparent systems, robust privacy safeguards, and explainable algorithms to build trust and equity. These insights offer a road map for leveraging AI to balance innovation with ethical responsibility, fostering sustainable, consumer-centred marketing practices.

Keywords: Artificial Intelligence in Marketing; Explainable AI (XAI) in Marketing; Hybrid AI Models in Marketing; Personalized Customer Engagement; Data Privacy in Marketing; Ethical AI in Advertising; Predictive Analytics in Marketing.

DOI: https://doi.org/10.5281/zenodo.14603644

PDF: https://ijirst.demo4.arinfotech.co/assets/upload/files/IJISRT24DEC1080.pdf

REFERENCES

  1. Nalini, M., Radhakrishnan, D.P., Yogi, G., Santhiya, S., Harivardhini, V., et al.: Impact of artificial intelligence (ai) on marketing. Int. J. of Aquatic Science 12(2), 3159–3167 (2021)
  2. Barari, M., Casper Ferm, L.-E., Quach, S., Thaichon, P., Ngo, L.: The dark side of artificial intelligence in marketing: meta-analytics review. Marketing Intelligence Planning 42 (2024) https://doi.org/10.1108/MIP-09-2023-0494
  3. Masnita, Y., Kasuma, J., Zahra, A., Wilson, N., Murwonugroho, W.: Artificial intelligence in marketing: Literature review and future research agenda. Journal of System and Management Sciences 14, 120–140 (2024) https://doi.org/10.33168/ JSMS.2024.0108
  4. Wang, J.F.: The impact of artificial intelligence (ai) on customer relationship management: A qualitative study. Int. J. Manag. Account 5(5), 74–88 (2023)
  5. Verma, S., Sharma, R., Deb, S., Maitra, D.: Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Infor- mation Management Data Insights 1(1), 100002 (2021) https://doi.org/10.1016/ j.jjimei.2020.100002
  6. Dias, T., Gon¸calves, R., Costa, R.L., Pereira, L.F., Dias, A´.: The impact of arti- ficial intelligence on consumer behaviour and changes in business activity due to pandemic effects. Human Technology 19(1), 121–148 (2023)
  7. Wilson, G., Johnson, O., Brown, W.: The impact of artificial intelligence on customer relationship management (2024)
  8. Khrais, L.T.: Role of artificial intelligence in shaping consumer demand in e- commerce. Future Internet 12(12), 226 (2020)
  9. Xie, T.: Artificial intelligence and automatic recognition application in b2c e- commerce platform consumer behavior recognition. Soft Computing-A Fusion of Foundations, Methodologies & Applications 27(11) (2023)
  10. Babu, S.M., Kumar, P.P., Devi, S., Reddy, K.P., Satish, M., et al.: Predicting consumer behaviour with artificial intelligence. In: 2023 IEEE 5th Interna- tional Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), pp. 698–703 (2023). IEEE
  11. Abrardi, L., Cambini, C., Rondi, L.: Artificial intelligence, firms and consumer behavior: A survey. Journal of Economic Surveys 36(4), 969–991 (2022)
  12. Khan, S., Tomar, S., Fatima, M., Khan, M.Z.: Impact of artificial intelligent and industry 4.0 based products on consumer behaviour characteristics: A meta- analysis-based review. Sustainable Operations and Computers 3, 218–225 (2022)
  13. Shaik, M.: Impact of artificial intelligence on marketing. East Asian Journal of Multidisciplinary Research 2(3), 993–1004 (2023)
  14. Huang, M.-H., Rust, R.T.: A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science 49, 30–50 (2021)
  15. Safdar, N.M., Banja, J.D., Meltzer, C.C.: Ethical considerations in artificial intelligence. European journal of radiology 122, 108768 (2020)
  16. Malgieri, G., Custers, B.: Pricing privacy – the right to know the value of your personal data. Computer Law  Security Review 34(2), 289–303 (2018) https://doi.org/10.1016/j.clsr.2017.08.006
  17. Johnson, G.A., Shriver, S.K., Du, S.: Consumer privacy choice in online advertis- ing: Who opts out and at what cost to industry? Marketing Science 39(1), 33–51 (2020)
  18. Kavenna, J.: Shoshana zuboff:‘surveillance capitalism is an assault on human autonomy’. The Guardian 4 (2019)
  19. Park, G.: The changing wind of data privacy law: A comparative study of the euro- pean union’s general data protection regulation and the 2018 california consumer privacy act. UC Irvine L. Rev. 10, 1455 (2019)
  20. Leech, N.L., Onwuegbuzie, A.J.: A typology of mixed methods research designs. Quality & quantity 43, 265–275 (2009)
  21. Schoonenboom, J., Johnson, R.B.: How to construct a mixed methods research design. Kolner Zeitschrift fur Soziologie und Sozialpsychologie 69(Suppl 2), 107 (2017)
  22. Symonds, E.: A practical application of surveymonkey as a remote usability- testing tool. Library Hi Tech 29(3), 436–445 (2011)
  23. Asuncion, A., Newman, D., et al.: UCI machine learning repository. Irvine, CA, USA (2007)
  24. Snyder, R., Bish, D.L.: Quantitative analysis. Modern powder diffraction 20, 101–144 (1989)
  25. Andr´e, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., Huber, J., Van Boven, L., Weber, B., Yang, H.: Consumer choice and autonomy in the age of artificial intelligence and big data. Customer needs and solutions 5, 28–37 (2018)
  26. Bjørlo, L., Moen, Ø., Pasquine, M.: The role of consumer autonomy in developing sustainable ai: A conceptual framework. Sustainability 13(4), 2332 (2021)
  27. Nijhawan, L.P., Janodia, M.D., Muddukrishna, B., Bhat, K.M., Bairy, K.L., Udupa, N., Musmade, P.B.: Informed consent: Issues and challenges. Journal of advanced pharmaceutical technology & research 4(3), 134–140 (2013)
  28. Manti, S., Licari, A.: How to obtain informed consent for research. Breathe 14(2), 145–152 (2018)
  29. Lippi, M., Contissa, G., Jablonowska, A., Lagioia, F., Micklitz, H.-W., Palka, P., Sartor, G., Torroni, P.: The force awakens: Artificial intelligence for consumer law. Journal of artificial intelligence research 67, 169–190 (2020)
  30. Westr´en-Doll, N.: The computer knows best: Ai-powered personalization in marketing through the lens of data privacy. Master’s thesis (2024)
  31. Jabl-onowska, A., Kuziemski, M., Nowak, A.M., Micklitz, H.-W., Pal-ka, P., Sartor, G.: Consumer law and artificial intelligence. EUI Department of Law Research Paper 11 (2018)
  32. Nystoriak, M.A., Bhatnagar, A.: Cardiovascular effects and benefits of exercise. Frontiers in cardiovascular medicine 5, 408204 (2018)
  33. Kumar, V., Rajan, B.: Customer lifetime value: What, how, and why. In: The Routledge Companion to Strategic Marketing, pp. 422–448. Routledge, ??? (2020)
  34. Arrieta, A.B., D´ıaz-Rodr´ıguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garc´ıa, S., Gil-L´opez, S., Molina, D., Benjamins, R., et al.: Explainable artifi- cial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information fusion 58, 82–115 (2020)