Advancements in AI Applications for Healthcare and User-Centric Digital Health Solutions

Taiwo Alawiye1

1

Publication Date: 2024/07/02

Abstract: The integration of artificial intelligence (AI) in healthcare has progressed rapidly, offering transformative potential for diagnosis, treatment, and patient management. This paper explores recent advancements in AI applications in healthcare, emphasising user-centric digital health solutions. We discuss AI-driven diagnostic tools, personalised treatment plans, and the impact of AI on healthcare accessibility and efficiency. Furthermore, we examine the challenges and ethical considerations associated with AI deployment in healthcare, underscoring the importance of maintaining patient trust and data security.

Keywords: Artificial Intelligence, Healthcare, Diagnostics, Personalised Medicine, Digital Health, Patient Engagement, Ethical Considerations.

DOI: https://doi.org/10.38124/ijisrt/IJISRT24JUN1093

PDF: https://ijirst.demo4.arinfotech.co/assets/upload/files/IJISRT24JUN1093.pdf

REFERENCES

  1. Bickmore, T. W., Schulman, D., & Sidner, C. (2018). Automated interventions for multiple health behaviors using conversational agents. *Patient Education and Counseling, 92*(2), 142-148.
  2. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. *Nature Medicine, 25*(1), 24-29.
  3. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Schafer, B. (2018). AI4People—an ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. *Minds and Machines, 28*(4), 689-707.
  4. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. *Stroke and Vascular Neurology, 2*(4), 230-243.
  5. Keesara, S., Jonas, A., & Schulman, K. (2020). Covid-19 and health care’s digital revolution. *New England Journal of Medicine, 382*(23), e82.
  6. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. *Nature, 577*(7788), 89-94.
  7. McMurry, R., Murphy, S. N., MacFadden, D., Weber, G., Simons, W., Orechia, J., & Mandl, K. D. (2017). SHRINE: enabling nationally scalable multi-site disease studies. *PLoS One, 8*(3), e55811.
  8. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science, 366*(6464), 447-453.
  9. Patel, M. S., Asch, D. A., & Volpp, K. G. (2015). Wearable devices as facilitators, not drivers, of health behavior change. *JAMA, 313*(5), 459-460.
  10. Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. *PLoS Med, 13*(2), e1001953.
  11. Topol, E. (2019). High-performance medicine: the convergence of human and artificial intelligence. *Nature Medicine, 25*(1), 44-56.